

Planning a pellet plant (example for wood pellets)

Martin Englisch

BEA Institut für Bioenergie GmbH

A-1150 Wien, Avedikstrasse 21

office@bioenergy.co.at www.bioenergy.co.at

BEA - About us

BEA offers technical services for production and thermal utilization of solid biofuels, especially pellets.

Engineering and consultancy

- Process Development (e.g. Torrefaction)
- Engineering incl. permissions for pellet plants
- Business plans and Feasibility studies

Production and supply of lab equipment

- For pellet plants
- For fuel laboratories

Fuel analysis and Quality control

- Accredited laboratory for solid fuel analysis
- Contract with 130+ pellet production plants for ENplus[®]/DINplus inspection worldwide
- Experts with > 20 years experience

PPA professional pellet analyzer

Example pellet plant I

Good ideas

- Raw material with high potential and low competition (low quality hardwood)
- Innovative drying and production concept reducing drying energy
- New machine technology

Mistakes made

- No professional engineering
- High downtime
- Wrong product placement

Example pellet plant II & III

Source: BEA

Good ideas

- High quantity production using economy of scale
- Placed in port for easy export / in the sales area

Mistakes

 Raw material sourcing and logistics not planned properly

The business Idea

The first idea for a pellet plant:

- Evaluate raw material availability:
 - Quantity
 - Quality
 - Availability next 10 years
 - Availability during the year
- Define the product and quality requirements

\Rightarrow Engage a consultant / engineer for:

- Plant concept
- Business model
- Tenders

* Prohibited by law in some countries e.g. Italy and France

pellet use

Institut für Bioenergie

Power generation ~ 50% of current use

> Animal bedding & oil patch absorbent & Smoking stove High price, low quantity

Cooking Future market Africa/Asia?

Heat & hot water Residential/commercial/ institutional ~ 50% of current use

Source: Wood Pellet Association of Canada

Source: Mimimoto

Current markets for wood pellets (and quality topics)

Step I planning a pellet plant

The investor must provide

- Desired plant capacity
- Product requirements and raw materials available
- Product storage size and intended trade form
- Site to build plant and frame conditions: especially available infrastructure like power, water, etc.

Consultant should

- Check legal requirements
- Calculate mass & energy balance
- Create block chart (main technologies)
- Evaluate different technologies for specific project
- Create a process flow diagram (PFD)

Parameter Projet capacity operating hours	WBA - w 48 106 7 200	/ebinar t/a h/a			
			water	water	water
process step	Input	Output	input	output	balance
	t/h	t/h	%	%	kg/h
wood chips wet	4,17		50,0		
saw dust, wet	8,33		50,0		
wet grinding	4,17	4,17	50,0	50,0	0
dryer	12,50	6,94	50,0	10,0	5556
shavings	0,00			0,0	
dry storage	6,94	6,94	10,0	10,0	0
hammermill	6,94	6,94	10	10	0
condtioner	6,94	7,10	10	12	-158
additive	0,03	7,14			
pellet press	7,14	6,83	12	8	310
cooler	6,83	6,68	8	6	145
storage	6,68				

Mass & energy balance

Block diagram, example

Institut für Bioenergie

System decision

- Belt dryer: requires hot water (=> boiler), more expensive but safe operations and low emissions
- Drum dryer: fired with biomass, cheap in investment and operation

Source: Salmatec

Pellet press

System decision

- One big press or several small lines?
- Flat die press
- Ring die press

Selection of size and machine

Not all technology offered on the market is suitable for every purpose!

- Woody biomass is difficult to pelletize, needs strong machines
- Argro-residues eventually difficult to handle and convey

Example - Not suitable for wood pellets:

Small machines

Source: www.biofuelmachines.com/how-tomake-your-own-wood-pellets.html

Mobile systems

Source: www.hsbiopellet.com/product/Pellet-Press/Movable-Pellet-Plant.html

Pellet storage

System decision

- Silo storage
- Flat storage
- Only bagging, no storage

Source: www.liquidplanner.com/

Step II planning a pellet plant

The investor must provide

- Expected costs for raw material
- Expected price for product
- Costs for power, water, etc.
- Financial conditions (e.g. interest rates, capital costs)

Consultant should provide a project feasibility (bankable project)

- Create a plant layout
- Estimate investment costs
 - Invest for technical equipment incl. Installation and comissioning
 - Invest for site, construction incl. Infrastructure (usually in close cooperation with investor and needs local partner!!)
- Estimate operating costs
- Provide a business plan

Layout and visualization

Layout and visualization

Raw material reception and preparation

Layout and visualization

Investment, calculation

Total investment cost for a 50.000 t wood pellet plant, project "WBA webinar"

Invest	
construction	3 500 000 €
wet material conveying	2 200 000 €
dryer and dry silo	2 000 000 €
pelleting, truck loading	2 150 000 €
pellet storage, conveying	1 950 000 €
cabelling, control system, installation, comissioning	1 450 000 €
planning and permit	500 000 €
unexpected	500 000 €
total	14 250 000 €

Operating costs

Total annual operating cost for a 50.000 t wood pellet plant, project "WBA webinar"

operating costs	
spare parts	149 605 €
consumables (water, oil, additive)	125 284 €
heat for dryer	2 160 000 €
power	320 413 €
staff	370 000 €
rent	40 000 €
total	3 165 303 €

Summary

Ready to order and implement! Institut für Bioenergie

Input

sawdust wet	30 000 t (db)/a
costs sawdust wet	140,00 €/t (db)
wood chips	15 000 t (db)/a
cost wood chips	120,00 €/t (db)
Output	
Output 1: bulk	60%
Output 2: 15kg bags	40%
Price bulk (EXW)	290,00 € / t
price 15kg bags (EXW)	308,00 € / t
Project-Parameter	
operating hours pellet line	7 200 h/a
total production	48 106 t/a
financial parameters	
equity	20,0%
cost of equity	15,0%
cost of debt	2,5%
capital costs	5,00%
tax rate	25,00%

Business Model pellet plant Projekt WBA webinar

Business Model

a	total investment	14,3	Mio €
)	capital costs	38,36	€ / t
a	raw material	124,72	€ / t
)	operating costs	95,47	€/t
	consumables	5,71	€/t
	heat	29,93	€/t
	power	44,50	€/t
	staff	7,69	€/t
	rent	0,83	€/t
	bagging (calc. on total!)	6,80	€ / t
	production costs	258,56	€ / t
	sales price	297,20	€ / t
	earning	38,64	€ / t
	total sales	1 858 940	€/a
	financial indicators		
	Free Cash Flow	3,7	Mio €
	EBIT (average)	2,3	Mio €
	net earnings	1,5	Mio €
	net present value	17,3	Mio €
	amortization period	4,16	years

Interested in a feasibility ?

Martin.Englisch@bioenergy.co.at

BEA Institut für Bioenergie GmbH

A-1150 Wien, Avedikstrasse 21

office@bioenergy.co.at www.bioenergy.co.at